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Abstract--This paper deals with the study of the time-evolution of the distribution of drop sizes, velocities and 
temperatures of a cloud of droplets shot, with a given initial velocity and temperature and a given distribution 
of drop sizes, into a gas volume at fixed thermodynamical conditions. The mean free path of the gas 
molecules was large compared with the mean diameter of a droplet. The study is based on a phase-transition 
physical model, proposed by Bellomo (1974), which takes into account the kinetic theory of liquids and gases 
and the physics of gas-surface interaction. This model has proved suitable for time-dependent non 
equilibrium phenomena and has given theoretical results very close to experimental ones. 

1. INTRODUCTION 

The phenomenon of phase-change of small liquid droplets has been dealt with by several 
authors (see for example Rose & Glicksman 1973 and Ford & Lekik 1973), by means of the 

continuum mechanics equations. In particular Nix & Fukuta (1973) have proposed a nonsteady 

state theory in order to predict time-dependent evolutions. In rarefied gas conditions the 
boundary conditions at the interface, which require consideration at a molecular scale, (see 

Cipolla, Lang & Loyalka 1974), assume a great deal of importance. The problem of vaporization 
of droplets in the above mentioned physical conditions has been dealt with by Brock (1964) in a 
general form without defining the boundary conditions, whereas Lang & Kusher (1974) have 

discussed the boundary conditions by means of a phenomenological theory without a quantitative 
definition of the transport properties at the liquid-vapour interface. 

Recently Bellomo (1974) has proposed a phase-change physical model, described in detail in 
the next paragraph, in order to analyse the non-equilibrium time-evolutions of small droplets in 
rarefied gas conditions. The theoretical results given by this model have been successfully 
compared (Bellomo 1974), with the experimental results by Kurzius & Raab (1969) and Mills & 
Seban (1967). 

The present paper deals with the study of the time evolution of the distribution of drop sizes, 
velocities and temperatures of a multi-droplet system shot into a gas-vapour volume at fixed 
thermodynamical conditions. The phenomenon is time-dependent; in fact, in non-equilibrium 
conditions the droplets have strong initial variations of temperature (cooling or heating according 

to the gas conditions), with consequent variation of the vaporization rate. The rates of variation 
of the diameters, temperatures and velocities of the droplets (the velocity being reduced by the 
aerodynamic drag) depend upon the size of the droplet (see also Rose & Glicksman 1973; 

Bellomo 1973). Therefore a time-dependent evolution of the distribution of sizes, temperatures 
and velocities of the droplets occurs, which is studied herein. 

Numerical calculations relating to the vaporization of water droplets have been realized and 
visualize the obtained results. 

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM AND OF 

THE PHASE-CHANGE PHYSICAL MODEL 

Let us take into account a multi-droplet system shot into a gas-vapour medium; all droplets 

with an initial temperature To and a one-directional velocity Uo, and with their diameters 
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distributed according to a probability density Po(D; t = 0). The dimensions of the gas-vapour 
volume being large enough to keep its thermodynamicai conditions unchanged during the evolution 
and the mean free path of the gas-vapour molecules being large compared with the mean size of a 
droplet. The aims of our research were to find: 

(a) The time-evolution of D(t), T(t) and U(t) of a single droplet moving in a gas-vapour 
system in the above said physical conditions. 

(b) The time evolution of the probability densities PT(T;t) ,  Po(D; t )  and Pu(U; t )  

characterizing the state of the multidroplet system; the initial conditions as given above. 
In this paper we shall study the phase-transition at the liquid surface by means of the above 

said physical model recently proposed by Bellomo (1974) and we relate to that paper for more 
detailed descriptions and comparisons between theoretical and experimental results. According 
to the model a statistical velocity probability density of the type: 

P(V)=(41Vzr)(VIc)~exp (-v21c2); c~(T) = (2 k T) [11 

is assumed both for surface vapour- and liquid-molecules, with condensation of vapour 
molecules with translational velocity lower than a condensation velocity Vc(T) corresponding to 
a trapping energy, and with vaporization of the molecules of the liquid surface with translational 
velocity higher than a vaporization velocity V,(T) corresponding to the energy which is 
necessary to overcome the bonding forces of the surrounding molecules. Both V¢(T) and V,(T) 
are assumed, for a given liquid-vapour system, to be function only of the surface temperature. 

According to the said model, the vaporizing and condensing molecules unit number fluxes, 
respectively N ÷ and N-  are given by the following equations: 

1 Ot 
N+ = 2VTr nLCLf+(T); N-- = 2"X/~" n®cvr(sv, ~b)f-(T); a = nv/n~, 

V, 2/C 2"~ f+(T) -  I +(V,/CL) 2 (exp(Vc2/CL2) - 1-- c, I. j 
IV21 c 2~, f - ( T ) =  exp(V21c 2~ , exp~ , t  L] c l  L ]  

X(Sv, ~b) = exp ( - sv  2 cos" ~,) + v'~rsv cos to [(1 + elf (sv cos ~b)], 

' * ' '  = h ± v ) " "  s v = U / c v ;  Cv=[2-~vvT®) ; CL \ my / ; 
/ k \~/2 

co= 2 r.) , 

[21 

[31 

[41 

[5] 

where the subscripts L, V, G indicate respectively liquid, vapour and gas; n is the number 
density, and the product (an®;() evaluate, by means of known equations of the kinetic theory, see 
Shidlovskiy (1967), the wall number density which is increased by the velocity U. See also figure 

1. 
The condensation and vaporization limit velocities V~ I(T) and I,', (T) can be evaluated, for a 

Uoo 

Figure 1. Geometry of the spherical droplet. 
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given liquid-vapour system, with the two equations which relate, by means of surface tension cr, 
the vaporization translational energy to the energy required to divide a liquid volume into single 
one-molecule droplets (see Merte 1973), and which state that, at equilibrium conditions and 

U = 0, N + must equal N - :  

1 , r / 3 \2/3 1_2 ]; 
2mLV ' (T )=~r ( r ;o ) [8~r~wn~)  D . n , J  

(T; D = oo) [61 
o,(T; D) = (1 + 81D) ' 

nLf+(T) = nv.,q(T; D ) . / - ( T ) ;  
/ o ' (T ,  D) 

nv.~(T" D) = nv~(T; D = oo) exp { -  
k 

[7] 

See also Reid & Sherwood (1966) and Levich (1971) for the correlation of the surface tension and 
the equilibrium number density to the droplet's diameter. In [6], 8 is a length, depending on the 
liquid, of the same order of the intermolecular distances. 

In this paper we do not discuss the model, but indicate that by using[4] it has been 
generalized, with respect to the paper by Bellomo (1974) relating to steady drops, to the more 

general problem of moving droplets. 

3. ANALYSIS OF THE TIME-EVOLUTION OF THE DROPLETS 

The time-evolution of a liquid droplet is described by the variation, in function of t, of D(t), 
T(t) and U(t). In particular the reduction rate of the diameter can be calculated equalling the 
variation of the mass of the droplet to the total mass-flux through the outer surface of the 

spherical droplet: 

d/or  ~3 \ f = m L ( N + - N - ) d A ;  dA =~DZ sin # d ,  [81 mLnL] L / .  

and taking into account [2-5], the following equation is obtained: 

dD= _ ( l lx/  cr )[ cLf+( T) _ acv(n /nL )f-( T)I,(sv ) ] 
dt 

r 1 
I,(sv) = J~ ~ l,~.o; X(s,,, ~) sm d6. [9] 

The variation rate of T(t) can be obtained by means of the energy balance of each droplet, 
equaling the total translational energy flux through the droplet's surface to the variation rate of 
the translational energy on the molecules of the liquid phase: 

fA ( E - - E + ) d A  = ~t (4kTnLD3) = 4 n L k D 2 ( 3 T ~  + D ~-~-T), [lO] 

where E -  is the unit flux of translational energy transferred from the gas-vapour volume to the 
drop and E ÷ is the one of vaporizing molecules. We assume, according to Kurzius & Raab (1969), 
accommodation of the translational degrees of freedom of the incident molecules at the 
temperature of the liquid surface. In this assumption E-  is given by a known result of kinetic 
theory and E + by the expression evaluated in the paper by Bellomo (1974): 

E -  = (n®c®/~/Tr)kT[(T®lT) " ~(s, d/) - 2X(s, ~) + a(m®/mv) m" 2X(Sv, #)F(T)]  

- ( 2  k-~-T ~ ''2" m ® = m v + ( 1 - a ) m o  s=(UIc®); c - x  m® ®/ ' 

1 
E ÷ = g-7-r- nLcLkTg(T); 

zVcr 

[111 

g(T)=[2  + 2(V./cL)2 +(V.ICL)']Iexp(V~IcL2). [12] 
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In conclusion the law of evolution of U can be deduced by the momentum equation of the motion 
of the drop, whose kinetic energy is reduced by the aerodynamic drag: 

1 2 '/T 2 + , 
-mLnL-~ D (d U/dO [13] 

where Co is the drag coefficient referred to the cross sectional area, which in the above 
mentioned hypotheses on the behaviour of the incident molecules, is given (see Shidlovskiy 1967) 
by: 

CD(s, T; T®) = (2s 2 + 1)/(exp (--S2)S 3) "{" elf (s)(2 + 2Is 2 - l/(2s ~) V - (213)OrT/T®) '~. 

The algebrical manipulation of [9-13] gives the following set of non-linear differential equations, 
of the first order, which describe, at given initial conditions, the time-evolution of each droplet: 

where: 

d X l  " 2  k \ i t2  . , , 
-dT = ( ;  ~T to) a ( X l ,  X2,X:; ,~,(n=m:, ,m:,T=,ro,  mv) 

i= 1,2,3; X , = D ;  X 2 = T ;  X 3 = s  

F~ = a (n®/nL )( T®/ To)laf-( T)Ii(sv ) - ( T ] To) l~2.f +( T) 
F2 = (4 T/D ){(n ®/nL )(mL/m ®)ll=(T®[ To)1,2[( T®/T)I2(s ) - 2L (s) 

+ a (m®lmL)mf-(T)L(Sv)] - (3/4)F1 - g (T)(TI To)1,2} 
F2 = (3[4)( Trm®/ mL )t12(n®l nL )( T®/ To)l12( l / D )Co ( T, s; T®) 

f~ 1 I,(s) = ~.o -~X(s, ~ )  sin ~ dO; 
f 1 

I2(s) = J,./)o ~to(s, 0) sin ~b dO. 

[15] 

[151 

The numerical integration of [15], joined to the initial conditions on T, s and PD(D; t = 0), can, at 
fixed ambient thermodynamical conditions, fully describe the time evolution of the multi-droplet 
system according to aim (b) of this paper. 

4. NUMERICAL CALCULATIONS AND DISCUSSION 

Numerical calculations relating to the vaporization of small water droplets in a rarefied stream 
have been realized. The evaluation of surface tension has been based on the correlation 
suggested by Reid & Sherwood (1967). In particular figures 2, 3 and 4 respectively, show T, 
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Figure 2. Temperature of the droplet versus time. 
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Figure 3. (D/Do) 3 versus time. 
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Figure 4. s/so versus time. 

(DIDO) 3 and s/So versus t in the following initial and ambient conditions: 

Do = 0.1 mm; To = 290°K; So = 0.5; n=/nL = 10 -6. [17] 

Figure 2 shows that the droplet can have an initial vaporization with cooling or heating, according 
to the ambient conditions. T(t),  however, does not reach an asymptotic value; in fact, s is 
reduced by the aerodynamic drag, and, therefore, the heating effect due to s is also reduced. Thus 
the temperature of the drop can have a continuous decreasing slope (as also experimentally 
observed by Danhehe et al. 1972) or an initial fast heating followed by a slow cooling until 
complete vaporization. Of course if U were kept constant, e.g. by means of a pressure jump 
along the trajectory of the motion, T would reach an asymptotic value as indicated on the 
previous paper on the same subject. Figure 3, in particular, points out that the influence of the 
presence of vapour is not negligible at low gas temperatures, whereas this effect is practically 
negligible in strong non-equilibrium conditions (low density or high temperature gas). These 
figures, besides physical considerations, visualize that large drops cool and loose velocity more 
slowly than small drops. Thus if N-drops start at a condition (Do, To, So), the same number reach 
the condition D(t ; Do, To, so), T(t ; Do, To, so), s(t  ; Do, To, so). This behaviour makes it possible 
to calculate the probability densities at given initial distribution on D. 
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Of course, if T and s were initially distributed at t = O, the mathematical background of this 

stochastic process would be improved, and we aim to do this in future. On the other hand the 
condition of initial distribution on D and s, T equal for all droplets is a realistic one and includes a 

large class of physical problems. 
In our calculations the following initial and ambient conditions have been assumed: 

Po(O/Oo;t : O) = (27/2)'a(O/Oo) 3 exp ( -  ~(O/Oo)2); Do : 0.1 mm; 

T(t = 0) = To = 290°K; s(t = 0) = So = 0.5; (nJnL) = 10-6; a = 0. [18] 

Figures 5 and 6 respectively, show Pr(T/To; t) and Ps (s/So; t) computed according to  the above 

mentioned analysis. 

Thus, this paper, by means of an experimentally confirmed physical model, has given a 

detailed description of the time dependent non-equilibrium evolution of a multi-droplet system in 

a gas-vapour stream showing both the influence of the gas conditions and of the initial conditions 

on the evolution. This work should also be a basis for further experimental investigation, which, 
in this class of problems, must not neglect the influence of all the physical parameters, as 

indicated in the paper, both on the initial strongly non-steady evolution and on the asymptotic 

behaviour at almost constant vaporization rate. 
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Figure 5. Evolution of distribution of temperatures. 
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Figure 6. Evolution of the distribution of velocities. 
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